the type of IPR instrument used to protect GM but not conventional and plants in some jurisdictions. The former are subject to IP protection that follows the gene rather than the trait, and is exempt from farmer's privilege provisions in some plant variety protection conventions [Global Chapter 6].
GMOs and chemical use
There is an active dispute over the evidence of adverse effects of GM crops on the environment [Global Chapter 3 vs. NAE Chapter 3]. That general dispute aside, as GM plants have been adopted mainly in high chemical input farming systems thus far [Global Chapter 3], the debate has focused on whether the concomitant changes in the amounts or types of some pesticides [Global Chapter 2; NAE Chapter 3] that were used in these systems prior to the development of commercial GM plants creates a net environmental benefit [Global Chapter 3]. Regardless of how this debate resolves, the benefits of current GM plants may not translate into all agroecosystems. For example, the benefits of reductions in use of other insecticides through the introduction of insecticide-producing (Bt) plants [NAE Chapter 3] seems to be primarily in chemically intensive agroecosystems such as North and South America and China [Global Chapter 3].
Livestock and aquaculture to increase food production and improve nutrition
Livestock, poultry and fish breeding have made substantial historical and current contributions to productivity [Global Chapters 3, 6, 7]. The key limitation to productivity increases in developing countries appears to be in adapting modern breeds to the local environment [CWANA Chapter 5; Global Chapter 3]. The same range of genomics and engineering options available to plants, theoretically, apply to livestock and fish [Global Chapters 3, 6; NAE Chapter 6]. In addition, livestock biotechnologies include artificial insemination, sire-testing, synchronization of estrus, embryo transfer and gamete and embryo cryopreservation, and new cloning techniques [see CWANA Chapter 5; Global Chapter 6; NAE Chapter 6 for a range of topics].
Biotechnology can contribute to livestock and aquaculture through the development of diagnostics and vaccines for infectious diseases [Global Chapter 6; NAE Chapter 6], transgenes for disease resistance [Global Chapter 3] and development of feeds that reduce nitrogen and phosphorous loads in waste [Global Chapter 3]. Breeding with enhanced growth characteristics or disease resistance is also made possible with MAS [Global Chapter 3; NAE Chapter 6]. As with plants, the difficulty with breeding animals is in bringing the different genes necessary for some traits together all at once in the offspring. Animals with desired traits might be more efficiently selected by using genomic maps to identify quantitative traits and gene x environment interactions.
There are currently no transgenic livestock animals in commercial production and none likely in the short term [Global Chapter 6]. Gene flow from GM fish also may be of significant concern and so GM fish would need to be closely monitored [CWANA Chapter 5; Global Chapter 3]. Assessing environmental impacts of GM fish is even more difficult than for GM plants, as even less is known about marine ecosystem than about terrestrial agroecosystems. |
|
Ways Forward
Biotechnology must be considered in a holistic sense to capture its true contribution to AKST and achieving development and sustainability goals. On the one hand, this may be resisted because some biotechnologies, e.g., genetic engineering, are very controversial and the particular controversy can cause many to prematurely dismiss the value of all biotechnology in general. On the other hand, those who favor technologies that are most amenable to prevailing IP protections may resist broad definitions of biotechnology, because past contributions made by many individuals, institutions and societies might undermine the exclusivity of claims.
A problem-oriented approach to biotechnology R&D would focus investment on local priorities identified through participatory and transparent processes, and favor multifunctional solutions to local problems [Global Chapter 2]. This emphasis replaces a view where commercial drivers determine supply. The nature of the commercial organization is to secure the IP for products and methods development. IP law is designed to prevent the unauthorized use of IP rather than as an empowering right to develop products based on IP. Instead, there needs to be a renewed emphasis on public sector engagement in biotechnology. It is clearly realized that the private sector will not replace the public sector for producing biotechnologies that are used on smaller scales, maintaining broadly applicable research and development capacities, or achieving some goals for which there is no market [CWANA Chapter 5; Global Chapters 5, 8]. In saying this, an IP-motivated public engagement alone would miss the point, and the public sector must also have adequate resources and expertise to produce locally understood and relevant biotechnologies and products [CWANA Chapter 1].
A systematic redirection of AKST will include a rigorous rethinking of biotechnology, and especially modern biotechnology, in the decades to come. Effective long-term environmental and health monitoring and surveillance programs, and training and education of farmers are essential to identify emerging and comparative impacts on the environment and human health, and to take timely counter measures. No regional long-term environmental and health monitoring programs exist to date in the countries with the most concentrated GM crop production [Global Chapter 3]. Hence, long-term data on environmental implications of GM crop production are at best deductive or simply missing and speculative.
While climate change and population growth could collude to overwhelm the Earth's latent potential to grow food and bio-materials that sustain human life and well being, both forces might be offset by smarter agriculture. Present cultivation methods are energy intensive and environmentally taxing, characteristics that in time both exacerbate demand for limited resources and damage long term productivity. Agroecosystems that both improve productivity and replenish ecosystem services behind the supply chain are desperately needed. No particular actor has all the answers or all the possible tools to achieve a global solution. Genetically modified plants and GM fish may have a sustainable contribution to make in some environments just as ecological agriculture might be a superior approach to achieving a higher sustainable level of agricultural productivity. |