However, overall, given the complex socioeconomic contexts, geopolitical and ecological processes in the agricultural and allied sectors, markets tempered with appropriate state support and regulation can be effective instruments to address poverty, livelihood needs and income, as well as environmental services and responsibilities of agriculture.
Multifunctional agricultural systems
By definition, the principle of multifunctionality in agriculture refers to agriculture that provides food products for consumers, livelihoods and incomes for producers and a range of public and private goods and services for citizens and the environment, including ecosystem functions. Existing specialization in the global agrifood system, coupled with government investments and policies in production and trade has led to a view of agriculture as an exclusively economic activity, measured in commodity-based, monetary terms. In the specialized production systems of NAE and parts of ESAP, CWANA and LAC, the focus on the multiple roles and functions of agriculture is drawing policy attention largely in response to the scope of possible investments in indirect support mechanisms, production and trade. In the relatively less endowed and more diverse farming systems of the world, especially in SSA and large parts of LAC, ESAP, and CWANA, the multiple functions of agriculture are being addressed as an important way to reduce the loss of biodiversity, encourage ecofriendly production systems and local and traditional knowledge, improve nutrition and gender relationships in agriculture through diverse production and processing systems and maintain a suite of livelihood options in rural areas.
These region-specific agricultural systems have the potential to be either highly vulnerable or sustainable, due to the inescapable interconnectedness and tradeoffs between the different roles and functions of agriculture. Formal AKST has typically focused on increased specialization of |
|
commodity production and not on optimizing the outcomes from dynamically evolving multifunctional systems involving biophysical and socioeconomic components. A challenge that AKST needs to overcome is the lack of research in geographical, social, ecological, anthropological and other evolutionary sciences as applied to diverse agricultural ecosystems. These are necessary to devise, improve and create management options and contribute to multifunctionality and may help in improving the sustainability of these resources and their effective use in production systems.
The social and cultural implications of livelihood options and of poverty, nutrition, and ecosystem conservation, whether of highly productive mixed crop-livestock systems in the wetlands or of low productivity crop-fodder-fiber and small ruminants systems in the arid areas in SSA, differ from the sociocultural implications of livelihoods and incomes from commercial production in France and California. Similarly, current subsidies, tariffs and investments to agriculture in countries like India, China and Japan in ESAP, and Tunisia and Syria in CWANA, imply different conditions, interests and capacities to address the tradeoff between the production and environmental functions of agriculture. As learned from the much contested sugar and cotton production and trade disputes, relative economic and environmental vulnerability, differential state support, agribusiness systems and market regulations determine the interconnectedness of the economic, social and environmental functions of agriculture. There is increasing recognition of the multiple roles and functions of agriculture, which can address environmental sustainability, poverty reduction and help achieve the elimination of hunger and malnutrition. The main challenges posed by multifunctional agricultural systems for AKST are:
• How do we support the necessary tradeoffs among increasing the productivity of food and animal feed to meet changing food habits, and enabling fiber and fuel |